The ergodic Hilbert transform for Cesàro bounded flows

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good modulating sequences for the ergodic Hilbert transform

This article investigates classes of bounded sequences of complex numbers that are universally good for the ergodic Hilbert transform in Lp-spaces, 2 ≤ p ≤ ∞. The class of bounded Besicovitch sequences satisfying a rate condition is among such sequence classes.

متن کامل

Pointwise Convergence of the Ergodic Bilinear Hilbert Transform

Let X = (X,Σ,m, τ) be a dynamical system. We prove that the bilinear series ∑ ′N n=−N f(τnx)g(τ−nx) n converges almost everywhere for each f, g ∈ L(X). We also give a proof along the same lines of Bourgain’s analog result for averages.

متن کامل

Everywhere divergence of the one-sided ergodic Hilbert transform for circle rotations by Liouville numbers

We prove some results on the behavior of infinite sums of the form ∑ f ◦ T(x) 1 n , where T : S → S is an irrational circle rotation and f is a mean-zero function on S. In particular, we show that for a certain class of functions f , there are Liouville α for which this sum diverges everywhere and Liouville α for which the sum converges everywhere.

متن کامل

On the convergence of the rotated one-sided ergodic Hilbert transform

Sufficient conditions have been given for the convergence in norm and a.e. of the ergodic Hilbert transform ([11], [5], [6]). Here we apply these conditions to the rotated ergodic Hilbert transform ∑ ∞ n=1 λ n n T f , where λ is a complex number of modulus 1. When T is a contraction in a Hilbert space, we show that the logarithmic Hausdorff dimension of the set of λ’s for which this series does...

متن کامل

Wiener-wintner for Hilbert Transform

We prove the following extension of the Wiener–Wintner Theorem and the Carleson Theorem on pointwise convergence of Fourier series: For all measure preserving flows (X,μ, Tt) and f ∈ L(X,μ), there is a set Xf ⊂ X of probability one, so that for all x ∈ Xf we have lim s↓0 ∫ s<|t|<1/s e f(Tt x) dt t exists for all θ. The proof is by way of establishing an appropriate oscillation inequality which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1994

ISSN: 0040-8735

DOI: 10.2748/tmj/1178225679